

Dispatchable Solar Power

May 2017

www.pvhstorage.com

Content

- Introduction to Gransolar Group
 - History
 - Global Installation Footprint
- Market Status
 - Current vs Projection
- Electricity Terminology
 - Time of Use Tariffs
- Technology
 - Introduction to PV & Storage
 - Design Examples
- Operating Modes
 - Oversizing
 - Alternative configuration of EMS
- Business Models
 - Cash & PPA Structures
- PVH Energy Storage
 - Product Line-up
 - Pipeline

Introduction to Gransolar Group

Distributed Generation EPC contractor Operation & Maintenance

SE ISE

GRS

Engineering design Quality control Testing and Commissioning

Tracking systems Support structure Controllers

GRS	Distributed Generation		EPC		
iii ISE	Engineering	Quality control / Commissioning		Independent technical assessment	
© PVH	Fabrication		Structure assembly	SCADA & Corrective maintenance	

History Total Installed PV Capacity

(Mauricio)

Key milestones of the year:

Global Installation Footprint

Market Status Current vs Projection

One of many cost projections (Li-Ion cost)

- Traditional clients: off grid lead acid <30 kW size in remote or rural locations
- Load Levelling (Li-Ion) 2016 increase with multiple EU tenders
- Catastrophes driving storage implementation (South African load shedding, South Australia blackout)
- Islanded grid first users of load shifting (2 x PV w/storage on Hawaii 2016-17)

PVH battery in use on PV plant (simulation)

- Load shifting taking form with hybrid business cases of price arbitrage and capacity/demand reduction as main drivers
- Large PV and Wind projects being planned with storage
- Large utility **capital investment deferral** projects with storage to avoid grid upgrades
- Industrial clients taking lead on storage (data centres, mines, large users)

Electricity Terminology *Base Load*

Typical Season Load Profile

Seasonal Load

Peak Load

Capacity

Unused Capacity

Load Shifting

Time of Use Tariffs

Electricity Consumption vs Solar Production

Technology Introduction to PV

- Imagine a car:
 - 300HP is the MAXIMUM horsepower the 3.7L V6 engine can deliver at its peak power output / performance (power = kW)
 - 1000kWp PV System refers to the 1MWp peak MAXIMUM output the system will produce in full sunlight (kWp – Kilowatt Peak)
- System sizing is described as the PEAK output in full sunlight under 'Standard Test Conditions' and can refer to AC (kW) or DC (kWp)

Technology Introduction to PV

Typical Design Methodologies

Technology Introduction to Storage

- Imagine another car:
 - The **power** is the horsepower of the engine, the bigger engine the faster acceleration (**power = kW**)
 - The range you can drive is determined by the size of the fuel tank (or for EV's the size / capacity of battery), the bigger the tank, the longer the range (capacity = kWh)
- Traditional PV Plants: **kW** defines **power output** only. **kWh** defines the **volume of power output** delivered over **time**
- Energy Storage Plants: kW defines charge/discharge power. kWh defines the time one can deliver a set kW power output

Technology Introduction to Storage

Technology Design Examples

Spinning Reserve	Load Levelling		
10% Power @ 15 minutes	10-25% Power @ 2-4 hours		
Value Proposition:	Value Proposition:		
Off-grid applications – allows generators to	Intermittency - Day time PV plant production		
start up or be taken off line.	levelling (ramp rate control).		
Ramp rate control – Fill solar PV production	Therefore offsets daytime consumption only.		
gaps on cloudy days.	Helps increasing renewable penetration.		
Load Shifting (Base Load Plants)	Peak Hour Plants		
25-40% Power @ 4-6 hours	>50% Power @ 4-6 hours		

Technology Design Examples

Operating Modes

Oversizing

Solar PV with no Storage (Blue Only)

Solar PV with Storage (all colours)

Slide shows 7th of May production with average solar output; no cloud cover but reduced output in the morning and afternoon and below the baseload requirement at midday peak.

Bell shaped production curve	No intermittency due to oversizing and storage		
No evening production	Evening production is stable and predictable		
A majority of days would have no intermittency and a large evening production			

Operating Modes Alternative configuration of EMS

Intermittency Prioritized

Evening Prioritized

Both graphs show April 25th production; a below average day with low solar production due to earlymidday and an afternoon cloud cover reducing output significantly (50% reduction)

When Intermittency is prioritized the battery
discharges most of it's power during normal sun
hours to avoid variations in daytime productionWhen evening is prioritized the plant has
intermittent daytime production but a stable and
predictable evening production

Flexibility in operations: the prioritization can be changed as required by the off taker (daily)

Business Models *CASH vs Power Purchase Agreement*

		Intermittency	Load Shifting
Flat Rate	 Rate based on stable baseload consumption applications Daytime production is prioritised (no intermittency) Storage reacts to poor day time weather conditions caused by cloud cover. 		
Peak Hours	 Rate based on peak hour consumption applications Evening (peak hours) production is prioritised (no intermittency) Storage does not react to poor day time weather conditions caused by cloud cover. 		

PVH Energy Storage *Product Line-up*

- 200 kW power
- 1000 kWh capacity
- Ideal for off grid or C&I projects
- Matches well with 400-500 kW solar PV plant
- Simple installation on site
- Delivered complete with DC/AC inverters and SCADA system
- Life expectancy >20 years or 20.000 cycles
- Temperature range without cooling/heating: -5 to 50 degrees

- 500 >1000 kW power
- 4000-6000 kWh capacity
- Ideal for large scale PV plants and utility interconnections (substations)
- Requires rodent proof and water tight building (simple industrial building)
- AC MV connection, SCADA included in EMS
- Life expectancy >20 years or 20.000 cycles
- Temperature range without cooling/heating: -5 to 50 degrees

PVH Energy Storage *Pipeline*

╡╪╪╪╪<mark>╢</mark>╴╪╪╪╪╪╪╪╪╪╪┊╢╴╪╪╪╢╴<mark>╢</mark>╴╪╪╪╪╪╪╪╪╪

PVH Energy Storage Contact

CONTACT

www.gransolar.com www.pvhstorage.com

DYLAN TUDOR-JONES

dtudor-jones@gransolar.com +27 (0) 82 450 4619

MADRID Sepulveda, 17, Pª Baja 1 y 2 Alcobendas Madrid 28108 España +34917 364 248 España

SOUTH AFRICA

madrid@gransolar.com

Unit 102A, 1st Floor Atterbury House Hampton Office Park 20 Georgian Crescent East Bryanston, Johannesburg +27 (0) 104 920 558 **EEUU** 222 Sutter St; # 410 San Francisco, CA 94108 Tlf: +1 (415) 243-4469

> ALMERÍA Antonio Cano, 140 1º Izda 04009 ALMERIA España

Tel: +34 950 278 020

MEXICO Avenida Paseo de la Reforma 412 Planta 7 Colonia Juárez, Delegación Cuauhtémoc CP 06600 Mexico D. F. Tel. +52 (1 55) 41235148

VALENCIA

Polígono Industrial Castilla, Vial 1, nº 13 46380 Cheste (Valencia) España

BRAZIL

Rua Antonio Christi, 453 Parque Industrial Jundiaí 3 Cep 13213-183 – Jundiaí / SP

DUBAI

Damac Smart Heights 23rd Floor, Suite 2311 P.O.Box 393578, Dubai, UAE