Airway Management Resources in Operating Theatres

Provisional recommendations for South African hospitals and clinics

Eric Hodgson, Chief specialist anaesthesiologist, Inkosi Albert Luthuli Central Hospital and Honorary lecturer Nelson R Mandela School of Medicine, eThekwini-Durban, KZN.

Anelee Milner, Principal Specialist anaesthesiologist, Department of Anaesthesia, Charlotte Maxeke Academic Hospital and Associate Professor, University of the Witwatersrand, Johannesburg, Gauteng.

Andrie Alberts, Head: Clinical Unit, Department of Anaesthesiology and Critical Care, Faculty of Health Sciences, University of Pretoria.

John Roos, Principal Specialist anaesthesiologist, Department of Anesthesiology, Mitchell’s Plein Hospital, Cape Town, Western Cape.

Maria Reyneke, Specialist anaesthesiologist, Department of Anesthesiology, Universitas hospital, Bloemfontein, Free State.

Correspondence to: RE Hodgson, e-mail: iti20178@mweb.co.za

INTRODUCTION

These guidelines were first published in 2008. Since then there have been major advances in the field of airway management, including a revision of the American Society of Anesthesiologists (ASA) algorithm (1) for airway management and the publication of a simple but effective approach to airway management, VORTEX, from Australia (2). An important recent publication from the British Difficult Airway Society (DAS) is a guideline for extubation (3). The algorithms contained in these guidelines are reprinted in Appendix 1.

General anaesthesia (GA) requires airway instrumentation to facilitate spontaneous or mechanical ventilation. The endotracheal tube (ETT) remains the airway management device of choice where mechanical ventilation is required in intensive care, emergency medicine and anaesthesia, particularly where muscle relaxants are used and airway protection is required. Endotracheal intubation remains an essential skill for anaesthesia practitioners, intensivists and emergency physicians.

The variety of airway devices has proliferated since 2008. The proliferation of devices is likely to indicate the ideal device/s for management of airway difficulties, has yet to be invented. The intention of this review is to provide a suggested guideline for the equipment currently obtainable in South Africa that should be available in healthcare facilities (HCFs) where intubation is performed for GA.

The utility of Supraglottic Airway Devices (SADs) as rescue devices in the event of difficult or failed intubation best described for the LMA™ and the subsequent LMA™ variants designed for specific clinical scenarios (4). SADs available in SA are listed in Appendix 2.

Requirement for endotracheal intubation

The decision to perform endotracheal intubation is dependent on both patient and procedural factors that will not be discussed in this article, but which have been extensively reviewed (6).

Airway Assessment

The goals of airway assessment have recently been redefined by the American Society of Anaesthesiologists (5).

1. Are there problems with Consent and/or Cooperation

2. Is laryngoscopy going to be difficult?

 The detailed description of airway assessment in the ASA guidelines may be summarised by the four D’s (Figure 1):

3. Is mask ventilation going to be difficult?

 The features associated with difficult mask ventilation may be summarised by the acronym “BONES” (6):

4. Is intubation going to be difficult?:

 Situations where the larynx is easily seen but an ETT may still be difficult to pass are most often due to subglottic stenosis (tracheal stricture) (Figure 1) (5):

 - Previous history of endotracheal intubation esp. in ICU
 - Voice changes
 - Dyspnea and reduced effort tolerance that may be treated as “Unresponsive asthma”

5. Is airway rescue going to be difficult?:

 - By supraglottic airway device (SAD)
 Difficulty with SAD rescue can be defined by the acronym “RODS” (Figure 1) (6):
 - By infraglottic (surgical) cricothyrotomy
 Difficulty with infraglottic rescue, required if supraglottic rescue fails, may be defined by the acronym “SHORT” (6):
Following airway assessment, the person performing the intubation should be in a position to decide between three possible options:

- 95% of patients will have no abnormalities on the airway assessment in Figure 1. They can be managed by a routine induction of anaesthesia including muscle relaxants if required.
- 4% of patients will have difficulties identified, especially with laryngoscopy. Should the intubator have assessed mask ventilation and supraglottic rescue as easy the patient may be induced, either by a volatile or intravenous agent, and laryngoscopy performed (“quick look”), preferably with a video laryngoscope.
- 1% of patients will have difficulty in all the assessments in Figure 1. They need to be intubated awake using a flexible scope with a suction port. Alternatives would include awake video or direct laryngoscopy, awake tracheostomy, retrograde intubation or awake blind nasal intubation according to available resources and skills.

Classification of airway equipment

From the various scenarios discussed above, airway devices can be classified into three classes:

- **Routine equipment for endotracheal intubation**, INCLUDING additional equipment for facilitation of intubation, where there is no difficulty with mask ventilation.
- These devices should be available in ALL THEATRES.
- **Alternative devices for establishing a definitive airway**, including devices for a surgical airway.
- These devices should be found in the AIRWAY RESOURCE CART (see appendix 3).
- **Alternative devices for airway rescue**
- **Alternative devices for establishing a definitive airway**

Table 1: The requirement for airway equipment according to the Healthcare Facility (HCF)

<table>
<thead>
<tr>
<th>Equipment requirement</th>
<th>All HCFs including clinics, where GA and intubation are not routinely performed (OPD/ER/ICU)</th>
<th>District hospitals where GA and intubation are performed infrequently</th>
<th>Regional and tertiary hospitals and busy district hospitals, where GA is performed frequently</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance of endotracheal intubation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Additional routine equipment for difficult airway</td>
<td>No</td>
<td>Yes – limited choice of items (see below).</td>
<td>Yes – wider choice of additional items (see below).</td>
</tr>
<tr>
<td>Equipment for emergency “can’t intubate/can’t ventilate”</td>
<td>Yes – emergency airway kit: including LMA and scalpel.</td>
<td>Yes – emergency airway kit: including LMA and scalpel.</td>
<td>Yes – emergency airway kit: including LMA, scalpel and one or more of: EasyTube or laryngeal tube suction (LTS) or Combitube or Seldinger cricothyrotomy instruments or Rigid bronchoscope.</td>
</tr>
<tr>
<td>Alternative devices for airway rescue</td>
<td>No</td>
<td>Yes – airway resource cart with a limited choice of items. Must include LMA and variants, depending on patients treated (see below).</td>
<td>Yes – airway resource cart with a wider choice of equipment depending on procedures being done and available expertise (see below).</td>
</tr>
<tr>
<td>Alternative devices for establishing a definitive airway</td>
<td>No</td>
<td>Yes – airway resource cart with contents depending on the levels of training of available staff (see below).</td>
<td>Yes – airway resource cart with wider choice of equipment, depending on procedures being done and the available expertise (see below).</td>
</tr>
</tbody>
</table>
• Emergency airway equipment, where laryngeal visualisation AND mask ventilation are BOTH difficult. These devices should form an easily accessible EMERGENCY AIRWAY KIT (see appendix 2).

The requirement for airway equipment is based on the level of facility in which intubation is being performed, and also on whether the intubation is an elective or emergency procedure.

Equipment for performance of endotracheal intubation

Suppliers of the equipment discussed below are detailed in Appendix 5

Table II: Equipment necessary for performing endotracheal intubation

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Size/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facemasks</td>
<td>Size 3-5 for adults</td>
</tr>
<tr>
<td></td>
<td>Size 0-3 for paediatrics</td>
</tr>
<tr>
<td>Guedel airways</td>
<td>Size 3-5 for adults</td>
</tr>
<tr>
<td></td>
<td>Size 0-2 for paediatrics</td>
</tr>
<tr>
<td>Two laryngoscope handles</td>
<td></td>
</tr>
<tr>
<td>Laryngoscope blades</td>
<td>Size 3-5 for adults</td>
</tr>
<tr>
<td></td>
<td>Size 1/2 for paediatrics</td>
</tr>
<tr>
<td></td>
<td>Size 3/4 for adults</td>
</tr>
<tr>
<td></td>
<td>Size 0/1/2 for paediatrics</td>
</tr>
<tr>
<td>Endotracheal tubes</td>
<td>Size 5.5-8 cuffed (two per 0.5 increment) for adults</td>
</tr>
<tr>
<td></td>
<td>Size 2.5-3 cuffed and uncuffed (two per 0.5 increment) for paediatrics</td>
</tr>
<tr>
<td>Yankauer suction nozzles (adult and paediatric) and tubing</td>
<td></td>
</tr>
<tr>
<td>Suction catheters to fit available endotracheal tubes</td>
<td></td>
</tr>
<tr>
<td>Magill’s forceps, including a smaller size for paediatrics</td>
<td></td>
</tr>
<tr>
<td>Bag valve mask with oxygen</td>
<td></td>
</tr>
</tbody>
</table>

Additional devices available in any theatre where GA is performed

• Malleable stylet, including a smaller size for paediatrics
• Malleable bougies including:
 - Re-useable / Single use bougie
 - Hollow Frova ± stylet
 - Solid Eschman

Two useful mnemonics to assist in preparation for endotracheal intubation are shown in figure 2:

2. Equipment for emergency CAN’T INTUBATE/ CAN’T VENTILATE airway management

This equipment may be available for routine airway management or on the Airway Resource Cart. However, for an emergency situation, intervention will be more rapid and effective if the necessary equipment is available in a clearly marked container in an identified location.

The contents of the container should include laryngeal masks, a scalpel and a selection of the other items listed below.

YBAGPEOPLE (7)
Y – Yankauer suction
B – Bag valve mask resuscitator
A – Access to a vein
G – Get a team for assistance
P – Position patient appropriately
E – Endotracheal tubes: variety of sizes
O – Oxygen and Oropharyngeal (Guedel) airways
P – Pharmacological agents for induction, paralysis and resuscitation
L – Laryngoscope with spare handle and variety of blades
E – Evaluation for airway difficulty

The 7 Ps of RSI (6)
Preparation
Preoxygenation
Pre-treatment: Antacid / Anticholinergic
Push induction drug ± Paralytic agent
Position and Protect (C-spine)
Placement of ETT with Proof by capnography
Post-intubation care

Figure 2

A list should be provided in the container, so that items may be replaced when they are used. Disposable items are preferred to reusable items as they are easy to replace and less likely to be lost.

Emergency airway kit

1. Supraglottic Airway Device (SAD) (See appendices).
 a. Variety of other Supraglottic Airway Devices (SADs)
 b. Specific Clinical Scenarios
 Morbid Obesity / Pregnancy
 LMA Proseal™ (or other SADs with a oesophageal drainage port)
 Definitive airway required
 LMA Fastrach Disposable™

2. Non-anatomical SADs
 - Laryngeal tube and laryngeal tube suction
 - EasyTube
 - Combitube

3. Cricothyrotomy
 Needle (14-20G)
 • For paediatrics: <5 kg: 18-20G
 5-10 kg: 18-16G
 10-20 kg: 14-16G
 • Requires adapter: Size 7 ETT connector + 2ml syringe barrel Size 3ETT connector
 • Insufflation (10-15 l/min) only: No jet ventilation
 • NOT recommended for adults after NAP-4
 • Size 6 ET tube
 • - Scalpel blade and handle
 • - Introducer/Bougie
 • Single stab kit
 • Portex PKX
 • Portex Minitrach
 • Cook Melker
 • Non-Seldinger
 • Portex Minitrach
 • Cook Melker
 • Seldinger
 • Portex Minitrach
 • Cook Melker

4. Rigid bronchoscope – cardiothoracic/ENT theatres
The alternative devices chosen should be housed in a single location, either in a mobile trolley or a fixed cupboard. The smaller emergency airway kit may form part of this airway resource location. This resource location should be checked daily, and after every use, with the regular replacement of used / expired components.

Staff should be trained in the use of any equipment purchased. Every effort should be made to use equipment in an elective setting prior to emergency use. Invasive procedures should be practiced at least quarterly on a mannequin.

References

Airway resource cart

<table>
<thead>
<tr>
<th>Alternative equipment for establishing a definitive airway</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Specialised ET tubes for blind nasal intubation</td>
</tr>
<tr>
<td>- a. LMA Fastrach ET tube</td>
</tr>
<tr>
<td>- b. Parker Flextip ET tube</td>
</tr>
<tr>
<td>• McCoy laryngoscope</td>
</tr>
<tr>
<td>• Retrograde intubation kit</td>
</tr>
<tr>
<td>• Surgical tracheostomy equipment</td>
</tr>
<tr>
<td>• Percutaneous dilatational tracheostomy</td>
</tr>
<tr>
<td>• Alternative laryngoscopes</td>
</tr>
<tr>
<td>- C-Mac</td>
</tr>
<tr>
<td>- Glidescope</td>
</tr>
<tr>
<td>- Airtraq</td>
</tr>
<tr>
<td>- McGrath (Covidien)</td>
</tr>
<tr>
<td>- Co-Pilot</td>
</tr>
<tr>
<td>- AWS</td>
</tr>
<tr>
<td>• Flexible video stylet (TrachView)</td>
</tr>
<tr>
<td>• Malleable video stylet</td>
</tr>
<tr>
<td>- Levitan/Shikani</td>
</tr>
<tr>
<td>• Rigid video stylet</td>
</tr>
<tr>
<td>- Bonfi ls</td>
</tr>
<tr>
<td>• Flexible scope</td>
</tr>
<tr>
<td>• Fibreoptic</td>
</tr>
<tr>
<td>- A-scope</td>
</tr>
<tr>
<td>- Storz/Pentax/Olympus</td>
</tr>
</tbody>
</table>

The alternative devices chosen should be housed in a single location, either in a mobile trolley or a fixed cupboard. The smaller emergency airway kit may form part of this airway resource location. This resource location should be checked daily, and after every use, with the regular replacement of used / expired components.

Staff should be trained in the use of any equipment purchased. Every effort should be made to use equipment in an elective setting prior to emergency use. Invasive procedures should be practiced at least quarterly on a mannequin.

References

Appendix 1

A: ASA airway assessment and management algorithm

Anesthesiol 2013;118(2):251-270

1. Assess the likelihood and clinical impact of basic management problems:
 - Difficulty with patient cooperation or consent
 - Difficulty mask ventilation
 - Difficult supraglottic airway placement
 - Difficult laryngoscopy
 - Difficult intubation
 - Difficult surgical airway access

2. Actively pursue opportunities to deliver supplemental oxygen throughout the process of difficult airway management.

3. Consider the relative merits and feasibility of basic management choices:
 - Awake intubation vs. intubation after induction of general anesthesia
 - Non-invasive technique vs. invasive techniques for the initial approach to intubation
 - Video-assisted laryngoscopy as an initial approach to intubation
 - Preservation vs. ablation of spontaneous ventilation

4. Develop primary and alternative strategies:

 Awake Intubation
 - Airway approached by Noninvasive intubation
 - Invasive Airway Access
 - Succeed
 - FAIL
 - Cancel
 - Consider feasibility of other options
 - Invasive airway access

 Intubation after Induction of General Anesthesia
 - Initial intubation attempts successful
 - Initial intubation attempts UNSUCCESSFUL
 - FROM THIS POINT ONWARDS
 - CONSIDER:
 1. Calling for help
 2. Returning to spontaneous ventilation
 3. Awakening the patient

 Face Mask Ventilation Adequate
 - Nonemergency Pathway
 - Ventilation adequate, intubation unsuccessful
 - Alternative approaches to intubation
 - Successful intubation
 - FAIL after multiple attempts
 - Invasive airway access
 - Consider feasibility of other options
 - Awake patient

 Face Mask Ventilation Not Adequate
 - Consider/Attempt SGA
 - SGA Adequate
 - SGA Not Adequate or NOT FEASIBLE
 - Emergency Pathway
 - Ventilation not adequate, intubation unsuccessful
 - Call for help
 - Emergency noninvasive airway ventilation
 - Successful ventilation
 - FAIL
 - Emergency invasive airway access

*Confirm ventilation, tracheal intubation, or SGA placement with exhaled CO₂.

a. Other options include (but are not limited to): surgery utilizing face mask or supraglottic airway (SGA) anesthesia (e.g., LMA, ILMA, laryngeal tube), local anesthesia infiltration or regional nerve blockade. Pursuit of these options usually implies that mask ventilation will not be problematic. Therefore, these options may be of limited value if this step in the algorithm has been reached via the Emergency Pathway.
b. Invasive airway access includes surgical or percutaneous airway, jet ventilation, and retrograde intubation.
c. Alternative difficult intubation approaches include (but are not limited to): video-assisted laryngoscopy, alternative laryngoscope blades, SGA (e.g., LMA or ILMA) as an intubation conduit (with or without fiberoptic guidance), fiberoptic intubation, intubating stylet or tube changer, light wand, and blind oral or nasal intubation.
d. Consider re-preparation of the patient for awake intubation or canceling surgery.
e. Emergency non-invasive airway ventilation consists of a SGA.
B. Vortex approach

https://www.smashwords.com/books/view/277513
http://www.youtube.com/watch?v=HE_uy_1skq8

The Vortex Approach

For each NSA Technique Consider:
1. Manipulations:
 - Head & Neck
 - Larynx
 - Device
2. Adjuncts
3. Size/Type
4. Suction
5. Pharyngeal Muscle Tone

NO MORE THAN THREE ATTEMPTS AT EACH NSA TECHNIQUE

© Copyright Nicholas Chrimes & Peter Fritz, 2013. All Rights Reserved.
Appendix 2

DAS extubation guidelines

DAS Extubation Guidelines: Basic algorithm

Step 1 Plan extubation

- **Plan**
 - Assess airway and general risk factors

Step 2 Prepare for extubation

- **Prepare**
 - Optimise patient and other factors
 - Risk Stratify
 - **Low risk**
 - Fasted
 - Uncomplicated airway
 - No general risk factors
 - **‘At risk’**
 - Ability to oxygenate uncertain
 - Reintubation potentially difficult and/or general risk factors present

Step 3 Perform extubation

- **Low risk algorithm**
- **‘At risk’ algorithm**

Step 4 Postextubation care

- **Recovery or HDU / ICU**
 - Safe transfer
 - Handover / communication
 - O₂ and airway management
 - Observation and monitoring
 - General medical and surgical management
 - Analgesia
 - Staffing
 - Equipment
 - Documentation

DAS Extubation Guidelines: Low risk algorithm

Step 1 Plan extubation

- **Plan**
 - Assess airway and general risk factors

- **Low risk extubation**
 - Fasted
 - Uncomplicated airway
 - No General risk factors

Step 2 Prepare for extubation

- **Prepare**
 - Optimise patient and other factors
 - Select deep or awake extubation

Step 3 Perform extubation

- **Deep Extubation**
- **Awake Extubation**
 - Preoxygenate with 100% oxygen
 - Suction as appropriate
 - Insert a bite block (e.g. rolled gauze)
 - Position the patient appropriately
 - Antagonise neuromuscular blockade
 - Establish regular breathing
 - Ensure adequate spontaneous ventilation
 - Minimise head and neck movements
 - Wait until awake (eye opening/obeying commands)
 - Apply positive pressure, deflate the cuff & remove tube
 - Provide 100% oxygen
 - Check airway patency and adequacy of breathing
 - Continue oxygen supplementation

Step 4 Postextubation care

- **Recovery and follow up**
 - Safe transfer
 - Handover / communication
 - O₂ and airway management
 - Observation and monitoring
 - General medical and surgical management

The technique described for awake extubation is a suggested approach. Practice may vary in experienced hands.
Appendix 3

Difficult intubation equipment suppliers

1. Supraglottic airway devices

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>First generation SAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple airway device designed for routine use during general anaesthesia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA Classic™</td>
<td>All devices</td>
<td>1. Bench mark against which other first generation devices are measured. There is no robust evidence of any device outperforming the LMA Classic™. In vivo work supports 60 uses(^1), and in vitro 130 uses(^2).</td>
</tr>
<tr>
<td>LMA Unique™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA Flexible™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA Flexible™ disposable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA Fastrach™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA Fastrach™ disposable</td>
<td></td>
<td>2. Disposable version of LMA Classic™.</td>
</tr>
<tr>
<td>LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portex® Soft Seal®</td>
<td>Smiths Medical</td>
<td></td>
</tr>
<tr>
<td>- PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Silicone</td>
<td></td>
<td>1. Disposable version of LMA Classic™.</td>
</tr>
<tr>
<td>SureSeal with Cuff Pilot™</td>
<td>Teleflex Medical</td>
<td></td>
</tr>
<tr>
<td>- AuraStraight™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Aura40™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- AuraOnce™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- AuraFlex™</td>
<td></td>
<td>2. Additional benefit of kink-resistant tube.</td>
</tr>
<tr>
<td>Solus™</td>
<td>Intersurgical</td>
<td></td>
</tr>
<tr>
<td>Ambu® Aura-i™ (use with Ambu aScope)</td>
<td>SSEM Mthembu</td>
<td>5. Intubating LM. Benefit or equivalence to LMA Fastrach™ has not been demonstrated.</td>
</tr>
<tr>
<td>Non-anatomical SAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBM laryngeal Tube™</td>
<td>SSEM Mthembu</td>
<td>1. Disposable. In South Africa known as the LTA or LT. Locally the LT has gained only limited popularity in routine elective anaesthesia.</td>
</tr>
<tr>
<td>Second-generation SAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airway devices for routine use during general anaesthesia. Design features specifically to reduce the risk of aspiration in the event of regurgitation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMA Proseal™</td>
<td>Teleflex Medical</td>
<td>1. Supported by more clinical evidence of both efficacy and safety than any other second generation SAD. In vivo work supports 60 uses(^3), and in vitro 80 uses(^3).</td>
</tr>
<tr>
<td>LMA Supreme™</td>
<td>Teleflex Medical</td>
<td>2. This is not a disposable version of the LMA Proseal™. It combines the desirable features of the LMA Proseal™ and LMA Fastrach™. The device lacks the body of evidence underpinning the LMA Proseal™.</td>
</tr>
<tr>
<td>LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-Gel®</td>
<td>Intersurgical</td>
<td>1. Disposable. Thermoplastic elastomer non-inflatable cuff.</td>
</tr>
</tbody>
</table>
Non-anatomical SAD

1. VBM Laryngeal Tube Suction II™
2. Combitube™
3. EasyTube®

1. SSEM Mthembu
2. Covidien
3. Teleflex Medical

1. Disposable. In South Africa known as the LTAS or LT. Locally the LT has gained only limited popularity in routine elective anaesthesia.
2. And 3 are disposable crossover devices between ETTs and SADs, and they have characteristics of second generation SAD but they are rarely used for anaesthesia. They are disadvantaged by cost, trauma with insertion, and the potential for confusion with the dual tubes. May have a role in out-of-hospital airway rescue for those trained in their use.

Third-generation SAD

Specific attributes not yet defined – most likely would favour role as intubation-conduit in addition to (existing) qualities of second generation SAD.

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Baska Mask®</td>
<td>ProAct Medical</td>
<td>New device. Insufficient evidence. Incorporates "features of a third-generation" SAD.</td>
</tr>
<tr>
<td>2. 3gLM</td>
<td>Manufactured by CurveAir</td>
<td>Not commercially available. First trial just completed.</td>
</tr>
</tbody>
</table>

LMA; laryngeal mask airway. A protected term describing a laryngeal mask (of any type) manufactured by the original manufacturers of the device. LM; laryngeal mask. A laryngeal mask manufactured by anyone other than the original manufacturers. SAD; supraglottic airway device. LT; laryngeal tube. LTA; laryngeal tube airway. LTAS; laryngeal tube airway suction. ETT; endotracheal tube.

References

2. Airways

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovassapian airways</td>
<td>SSEM-Mthembu</td>
<td></td>
<td>Facilitates the placing of endotracheal tube orally while using the fibre-optic bronchoscope.</td>
</tr>
<tr>
<td>Berman airways</td>
<td>SSEM</td>
<td>4.0-11.0 mm GAAW-61540-11</td>
<td>Facilitates oral fibre-optic intubation. The tubular structure and different sizes are useful with excess upper airway soft tissue.</td>
</tr>
<tr>
<td>MADgic airway</td>
<td>Teleflex</td>
<td></td>
<td>An oral fibre-optic intubation guide that incorporates a mucosal atomiser device for administration of local anaesthetic and an insufflation port for oxygen.</td>
</tr>
<tr>
<td>Nasopharyngeal airways</td>
<td>Smiths/Covidien/SSEM-Mthembu</td>
<td>Size 6: 100/210/060 Size 7: 100/210/070 Size 7: Sizes: 2.5-9.00 mm WL321025-90</td>
<td>In a patient who cannot open his mouth, this soft airway can be placed through the nose. This airway has built-in tubes to connect to the oxygen source and capnogram.</td>
</tr>
<tr>
<td>Fibre-optic bronchoscope swivel connector</td>
<td>Smiths</td>
<td>100/257/000</td>
<td>Place fibre-optic scope through this connector. Can view vocal cords and bronchi while still ventilating.</td>
</tr>
</tbody>
</table>

3. Alternative laryngoscopes

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airtraq</td>
<td>Teleflex Medical</td>
<td>Regular 7-8,5 ATQ-011 Small 6-7,5 ATQ-021 Paed 4-5,5 ATQ-031 Infant 2,5-3,5 ATQ-041 Double lumen 28-41Fr ATQ-071</td>
<td>Portable, disposable laryngoscope allowing laryngeal visualisation with minimal anatomical displacement.</td>
</tr>
<tr>
<td>McGrath scope</td>
<td>Covidien</td>
<td></td>
<td>Portable, reusable laryngoscope allowing laryngeal visualisation with minimal anatomical displacement.</td>
</tr>
<tr>
<td>Glidescope</td>
<td>SSEM (Versathon)</td>
<td>Reusable blades available for patients <1 kg to the morbidly obese GVL2/3/4/5 Disposable blades sizes 0-4 400 g to the morbidly obese SBS 0270.0679-0628</td>
<td>Video laryngoscope allowing laryngeal visualisation with minimal anatomical displacement.</td>
</tr>
<tr>
<td>C-Mac</td>
<td>Karl Storz</td>
<td>Blades available for patients <1 kg to the morbidly obese GVL2/3/4/5 Blade sizes 0-4 and a difficult airway blade Codes: 8401 GXIC/DXIC/KXIC/AXIC/8XIC/HX</td>
<td>Video laryngoscope allowing laryngeal visualisation by conventional laryngoscope blades. Ideal for training.</td>
</tr>
<tr>
<td>King Vision</td>
<td>SSEM (Ambu)</td>
<td>Size 4 blade Size 3 and paediatric blade from April 2014 KVL03/KVIS01</td>
<td>Hand-held monitor with disposable laryngoscope blades. Video laryngoscope allowing laryngeal visualisation with minimal anatomical displacement.</td>
</tr>
<tr>
<td>IntuBrite videolaryngoscope</td>
<td>Statmedical</td>
<td>Blades: paediatric, adult and difficult adult Codes: VLS 2/3/4A</td>
<td>Video laryngoscope allowing laryngeal visualisation with minimal anatomical displacement.</td>
</tr>
</tbody>
</table>
SASA Airway Guidelines 2014

AWS Videolaryngoscope

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Videolaryngoscope</td>
<td>Pentax Blades: Adult, paediatric and neonatal blades Codes: ITL-S/T/P/N</td>
<td>Video laryngoscope allowing laryngeal visualisation with minimal anatomical displacement.</td>
<td></td>
</tr>
</tbody>
</table>

CoPilotVL™ Shelelela Medical Adult blade with size 3 and 4 disposable sheaths Sz 4: code 1740 Sz 4: code 1740

The CoPilot VL™ videolaryngoscope was designed to facilitate intubation by incorporating a novel bougie (endotracheal introducer) guide channel, or “bougie port”. This provides the clinician the option of using either a stylet or an endotracheal tube introducer (bougie).

4. Endotracheal tubes

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parker Flex Tip tubes</td>
<td>SSEM Uncuffed 2.5-5.5mm: PAIPFUO-25 to 35 Cuffed 4.0-8.5mm PAIPHV40/85</td>
<td>These tubes are useful when tubing a patient with the fibre-optic scope, as they are designed to hug the scope and therefore pass through the vocal cords more easily.</td>
<td></td>
</tr>
<tr>
<td>Microlaryngoscopy tubes (MLT)</td>
<td>Tyco Smiths Cuffed 4.0 mm-9.0 mm: I-PFRIC-40 to 90</td>
<td>These are adult-length tubes with cuffs, but are very narrow in diameter, allowing intubation and airway protection in patients with pathologically narrowed airways.</td>
<td></td>
</tr>
<tr>
<td>Standard endotracheal tubes</td>
<td>Uncuffed 2-6.5 Cuffed 6.0-9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced tubes (armoured)</td>
<td>Cuffed 6.0-9.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Invasive intubation via the trachea

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seldinger cricothyrotomy sets</td>
<td>Teleflex Cook Marcus Medical Smiths C-TCSS-400 C-TCSS-350 Minitrach</td>
<td>Used to establish an airway through the trachea in an emergency situation, if no airway access is possible through the mouth. Percutaneous entry via cricothyroid membrane.</td>
<td></td>
</tr>
<tr>
<td>Single stab cricothyrotomy</td>
<td>Smiths SSEM Quicktrach II 2.0 mm and 4.0 mm: VB30-04-002.1 VB30-10-004-1, respectively</td>
<td>Single incision required. Tracheal entry indicated by loss of resistance, followed by immediate advancement of a cuff ed endotracheal tube.</td>
<td></td>
</tr>
<tr>
<td>Dilatational tracheostomy kits</td>
<td>Cook Marcus Medical Smiths Medical Perry Hill International Teleflex Blue Rhino UniPerc percutaneous tracheostomy: 7.0, 8.0, 9.0 mm Code 100/597/070/080/090 Traceo TraceoQuick: 2.0 mm and 4.00 mm: 120600-000020/040</td>
<td>Used for establishing a definitive airway after rescue, where long-term upper airway obstruction is expected.</td>
<td></td>
</tr>
</tbody>
</table>
6. Local anaesthesia administration devices

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laryngotracheal anaesthesia kit (LTA) 360 degree</td>
<td>Smiths Medical SSEM Mthembu</td>
<td>7031/61 DVCAN.KITB</td>
<td>Enables topicalisation via vocal cords of the trachea.</td>
</tr>
<tr>
<td>Mucosal atomisation devices</td>
<td>Teleflex MADgic laryngo-tracheal atomiser</td>
<td>Adult and paediatric: MAD 600/700/720/800</td>
<td>Atomisation of local anaesthesia of nasal mucosa and pharyngeal mucosa through the mouth is made really easy.</td>
</tr>
<tr>
<td>Hudson's humidifier</td>
<td>RD7800</td>
<td></td>
<td>A plastic facemask with a nebulisation facility. Mask attaches to wall oxygen.</td>
</tr>
</tbody>
</table>

7. Exchange catheters

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBM tube exchanger</td>
<td>SSEM 11Fg, 14Fg, 19Fg VBM33.45.800.1 VBM33.46.800.1 VBM33.47.800.1</td>
<td>Used for uncomplicated atraumatic endotracheal tube exchange.</td>
<td></td>
</tr>
</tbody>
</table>

8. Intubating stylets/bougie

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frova intubating introducer</td>
<td>Marcus Medical Cook</td>
<td>With stiffening cannula C-CAE-8.0-35-FII C-CAE-14.0-65-FII Without stiffening C-CAE-14.0-65-FI VB33-70-650-1 15Fg</td>
<td>Used to facilitate endotracheal intubation. Angled tip assists in blindly placing bougie through vocal cords if anterior larynx. Can ventilate through hollow tube.</td>
</tr>
<tr>
<td>Eschmann bougie</td>
<td>Covidien</td>
<td></td>
<td>Flexible bougie, placed blindly between unseen vocal cords.</td>
</tr>
<tr>
<td>Parker Flex-It</td>
<td>SSEM</td>
<td>Use in 5 mm tube REF PAFLEX 5000 Use in 5.5-6.0 mm tube REF PAFLEX 5560 Use in 6.5-7.0mm tube REF PAFLEX 6570 Use in 7.5-8 mm tube REF PAFLEX 7580</td>
<td>Placed inside endotracheal tube and enables acute angulation of tip of tube.</td>
</tr>
<tr>
<td>Pocket bougie</td>
<td>Shelelela OLE 12102</td>
<td></td>
<td>Intubating bougie that is compact, self-lubricated and malleable. Fits endotracheal tubes as small as 5.0 mm.</td>
</tr>
<tr>
<td>VBM Bougies</td>
<td>SSEM Malleable SSEM Flexible</td>
<td>8Fg, 12Fg, 14Fg Code: VBM33-08-400-1/VBM 33-12-650-1/VBM 33-14-650-1 12Fg, 14Fg VBM33.12.800.1 VBM33.14.800.1</td>
<td>Malleable or flexible devices to assist with difficult intubations.</td>
</tr>
</tbody>
</table>
9. **Lighted stylets**

<table>
<thead>
<tr>
<th>Description</th>
<th>Supplier</th>
<th>Manufacturing code</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light wand</td>
<td>GRS Medical</td>
<td>VS 3960</td>
<td>Used in difficult intubations. Flexible lighted stylet can be used to intubate without a laryngoscope.</td>
</tr>
<tr>
<td>Bonfils intubation fibrescope: adult, paediatric, neonatal</td>
<td>Karl Storz</td>
<td></td>
<td>Non-malleable rigid fibroptic scope. Combines the transillumination of the lighted stylet with the ability to visualise structures at the tip of the ET tube.</td>
</tr>
<tr>
<td>Levitan and Shikani optical styles</td>
<td>Clarus/R Moloney</td>
<td></td>
<td>Rigid fibroptic stylet with limited malleability. Combines the transillumination of the lighted stylet with the ability to visualise structures at the tip of the ET tube.</td>
</tr>
<tr>
<td>TrachView</td>
<td>R Moloney</td>
<td></td>
<td>Flexible video stylet without steering capability. Allows visualisation of the structures at the tip of an ETT as the tube is placed.</td>
</tr>
</tbody>
</table>

10. **Flexible intubation scopes**

a. Fibreoptic scopes

These are sophisticated devices that allow visualisation from the scope tip, which is steerable. Ideally a scope should be available with a video output allowing magnification and viewing of the image by all members of the anaesthesia and surgical teams rather than just the endoscopist.

The three main suppliers of flexible fibreoptic scopes in South Africa are:

- Karl Storz
- Olympus
- Pentax

b. Flexible scope

A single-use flexible scope utilising LED light and CMOS image capture without fibreoptics, the aScope is available from SSEM-Ambu with an accompanying portable monitor (aView).